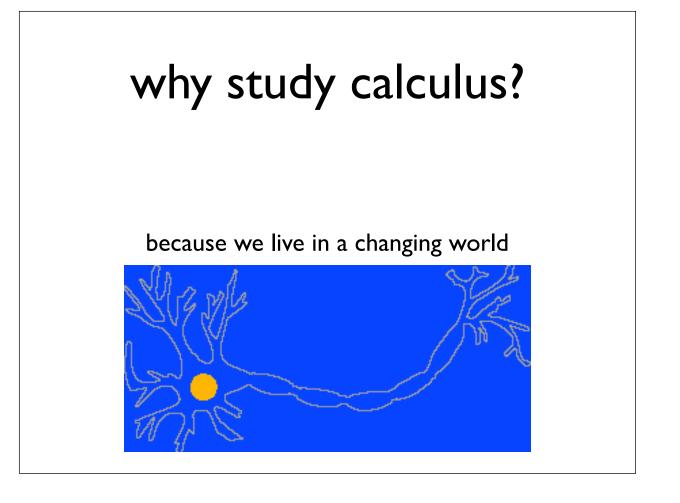


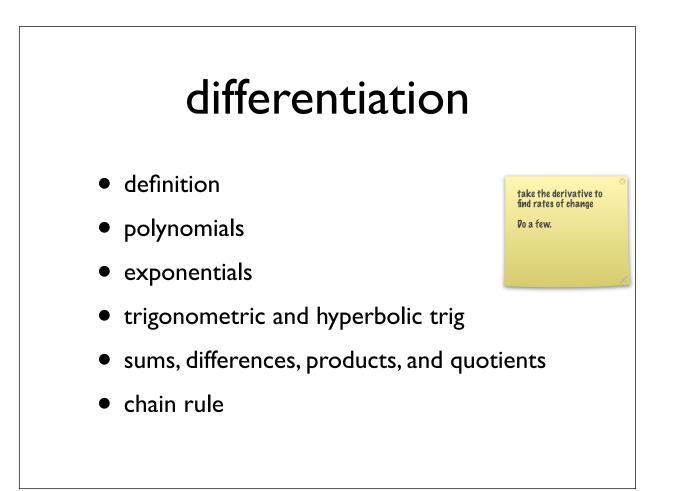
math 152.01

TR 5:30-7:48 • CC 230

Robert McDougal mcdougal@math.osu.edu 614-292-3365

office: MA 434 office hours: TR 4:00-5:18



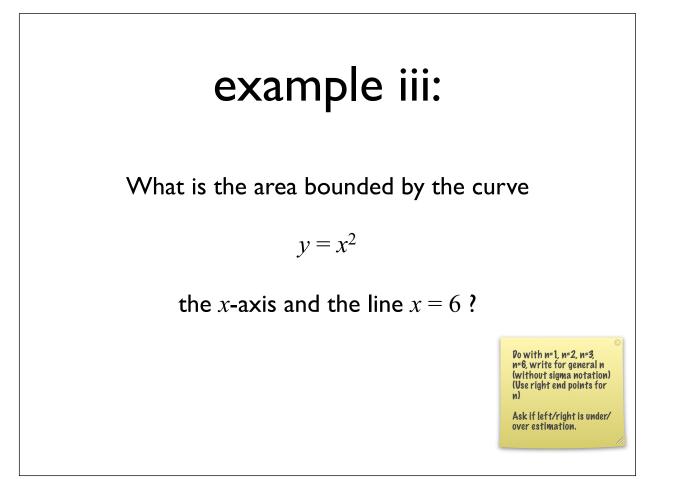


what if I know how things are changing?

example i:

Suppose I drive for one hour at 100 kph. How far have I traveled?

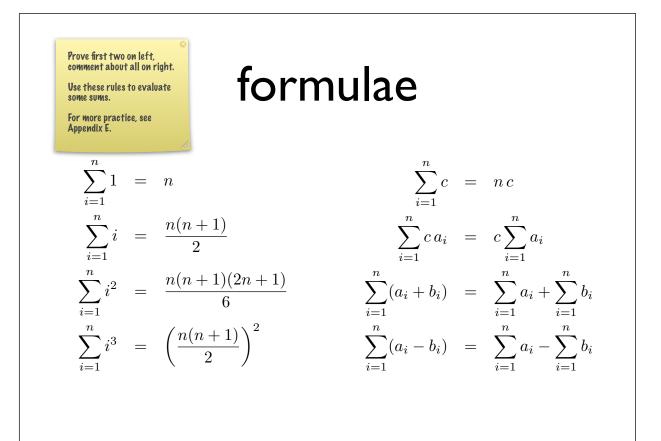
		e	ex	ar	nբ	le	ii	•	comput right-liu draw pi to area observe	e with bot mits cture of vo under cur e x-axis is t e/time, so	time, y-axis is
Every	y ter	n seo	cond	ls I v	wro	te d	owr	n my	' spe	ed i	in
nete		er se st ni							_	in tł	ne
									_	in tł 90	ne

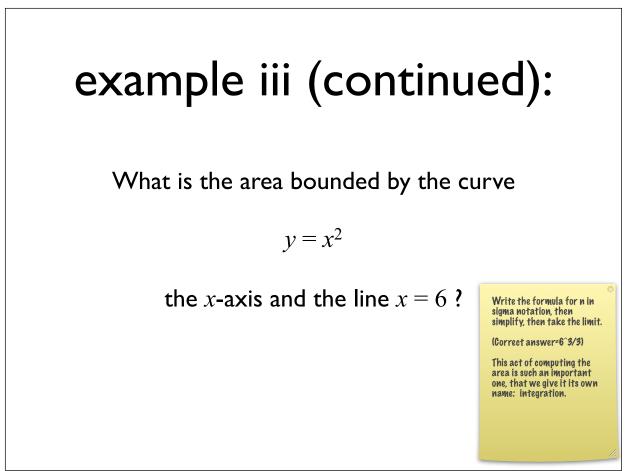


Introduce notation as a way to simplify sums.

Do a few examples.

Σ - notation





definition

If f is a continuous function defined for $a \leq x \leq b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 = a, x_1, x_2, \ldots x_n = b$ be the endpoints of these subintervals and we choose sample points $x_1^*, x_2^*, \ldots x_n^*$ in these subintervals so x_i^* lies in the *i*th subinterval $[x_{i-1}, x_i]$. Then the **definite integral** of f from a to b is

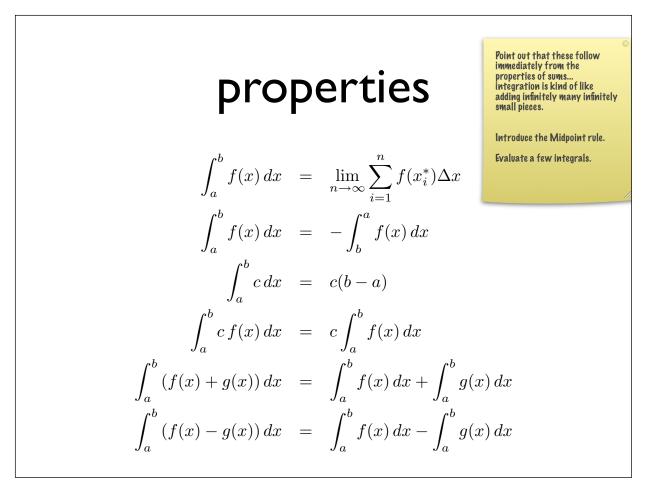
$$\int_{a}^{b} f(x) \, dx := \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

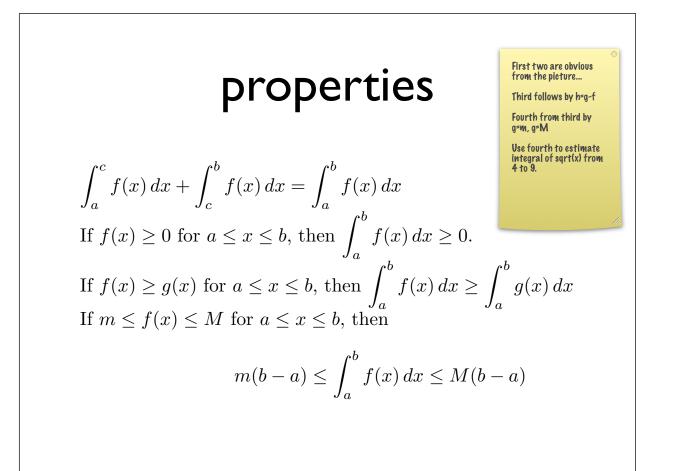
Point out that this is exactly what we just did (where x_i* were either left or right end points).

Note that if f is positive, this is the area under the curve (so write the x^2 result in this notation), so we can be clever... integrate, say, sqrt(9-x^2) from x=0 to 3.

Comment that since f can be negative, we're computing signed area rather than area.

Say that these sums are called Riemann sums.





next time

- quiz i: algebra and differentiation review
- attempt webwork 0, start webwork 1
- read §§ 5.1 5.4
- try suggested problems for 5.1 and 5.2
- we will discuss the fundamental theorem of calculus and introduce indefinite integrals